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JUSTIFICATION OF THE DYNAMIC METHOD OF
STUDYING ELASTIC SYSTEMS

Ya. S. Podstrigachl, D. A. Baydak and
L. M. Zoriy

Questions of the basis for the dynamic method, which plays a basic role in /1049*
the study of the vibrations and stability of deformable systems, have funda-
mental value for the general theory and its applications. However, for systems
with distributed parameters, such questions are in the initial stage of

development [1-4].

The approach developed here to justify the dynamic method is applicable

to elastic systems, investigation of whose perturbations leads to a mixed

problem of the form _ /
Plulz, 1) J+g(z) [3ufot+2c 6u/&t+at.] =F(u, dujdz,..., & afdz™"), :
;Um[u(-t. D) beme=0, Uylua(z, t}]i=i=0, :-ul, - H / (1)

u(z, 0)=9(z), du(zx, 0)/at=y(z), 0s.:s1. ‘ ‘ ‘
o R } / h
where & is a llnear d1fferent1al expr3551on of the 2n® th order with respect
to the variable x; u(x, t) 1§)a dlsplacement of E?qqfvstem being c0n51dered
the function g(x) > 0; the coﬁqiants a and ¢ are non—negatlve, F is a certaln nori~11in-

function such that F = 0 when u = 0; UiO and Uil are linear forms with respect to
W, Uy,.-., UyPn ~1; and ¢ (x) and Y({x) are any assigned functions. The
coefficients of the differential expression and of the linear forms in problem
{1) are dependent on the variéble x and the parameters of the loads applied

-

to the system.

The perturbations u(x, t) are assume@[to belong to a set, -U of - elg%
s

af
functions which are continuous with respect to a set of argument%fpontlnuous

mdlfferentlable]up to the order 2n inclusively with respect to x and up to the

second order with respect to t& [0, T], and which satisfy the boundary condi-

tions of problem (1), with the norm

lpcademician of the Academy of Sciences of the Ukrainian SSR.
*Numbers in the margin indicate pagination in the foreign text.
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Bl (Ig(z) Iz, t)l’dz) .
* i _ ;
Definition. A null solution of problem>(1) is called stable]if, for all

values of el €9 > 0, there exist corresponding values of 61, 62 > 0, such that

||ullifiel, and |}du/at]]| < e, when ﬁﬁiKO, if ||e]] < 6, and ||yﬂ]<f$t.f'1f

then this solution is skable, and, in addition, I u,“ -» 0,
]|au/3t|| 4ih when t = m; then it isgbailéa—ééymptdtiérstabilify.
Later on, the linear problem corresponding to (1) inejgei values determines:

Zy (@) ]-w'glz)y(z) =0,
U;.[y(z)],_."—sﬂ Uu[y(I)]g-g"O ""’. 2,.- (2)

In the general case it proves to be a non- selfadaolntwu multlparameﬂlcproblem /1050

Further, for the sake of simplicity, it is considered that its real values
depend on a single load parameter, p. Obviously, when p = 0 they are positive;
we shall consider them simple. Then there exists a gmglifsinterval of variationm,

= [0, p*), in the parameter p such that?

T

KQ:'(P) <l (P)<...<od(p)<..., p=l

The sequences of Sigen lﬁynctlons {y (x)} 1 and {zn(x)}: -1 of
to i -
problem 2 and thes conjugate{ as is known, form a b1 orthogonal system of

functions with a weight g(x), 0 < x < 1; and each of these sequences individually

iss en Rejisss base in the space L”Z(O, 1) {5].
& and

We assume that the nonlinearity ¥ the initial functions ¢ (x) and ¥(x)

satisfy the conditions -
NWF—FA<G (1) lu,—u:ll'* Vo, U,

where F, and F_ are its values when u = u, and u = u_,, respectively; and G(t) is

1 2 1 2’
any continuous positive function, whose characteristic index v* < ¢; o < 0 1sa cer-

tain constant.

The functions ¢ (x) and P(x) are exXpanded according to the real functions
of problem {2) into regularly converging series; the coefficients of these

expansions belong to — compact set in the space fz, the series

—_—

Y e e Zm. o (@), $u= (0 12).

e lrge ) o o meed nemt

2The value p* of the 1oading parameter corresponds to ar Eulerian, or selLf-.
vibrational, form of stability loss.



Then the following theorems are valid.

Theorem 1, Whenp g€ I or p = p* + v (v > 0, a rather small number), and
0 <t <T, there is a unique solution of problem (1), u(x; t) §EIJ, which can be
represented in-the form of the series:

u{zr, t)'=2| :.(t)yn(i).

wherein the westimape, of & lover andaly upper bound occurs

mlalt < Y 1z, P <Miul?,
. . _ mami .
where m and M are constants which do not depend on u.

Theorem 2. If p < p* and ¢ < 0, then the null solution of problem (1) is

asymptotically stable.

Theorem 3. If p = p* + v, then the null solution of problem (1) is

unstable.

Proof of the existence and uniqueness of the solution to the problem con-
- sidered is codicdedd) by reducing it to an equivalent problem for a denumemahie:l
system of integral equations obtainable on the basis of the above-noted properties

of the edgeh functions, with subsequent use of the contractive mappings principle.

Theorems 2 (and 3) about (in)stability are proved to a first approximation by
applying the direct Lyapunov method to the appropriate dedumersblein” system of

differential equations.

We note that this approach to justifying the dynamic method is being /1051
extended to more complex problems for deformable systems with distributed

parameters.

L'vov Branch of the Mathematics Faculty,
Institute of Mathematics,
Academy of Sciences UkSSR Received July 9, 1973
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